All-photonic intercity quantum key distribution
نویسندگان
چکیده
Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic 'intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically.
منابع مشابه
Photonic quantum computers and communication systems
Quantum information processors have been proposed to solve classically intractable or unsolvable problems in computing, sensing, and secure communication. There has been growing interest in photonic implementations of quantum processors as they offer relatively long coherence lengths, precise state manipulation, and efficient measurement. In this thesis, we first present experimental techniques...
متن کاملQuantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
Physical implementations of quantum key distribution (QKD) protocols, like the Bennett-Brassard (BB84), are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high rate of multi-photonic pulses introduces vulnerabilities that can be exploited by ...
متن کاملFundamental rate-loss trade-off for the quantum internet
The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by usin...
متن کاملProgress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture
The goal of this program is to increase the private information capacity of optical channels. Here we report on the theoretical and experimental progress, including the development of a large-alphabet quantum key distribution protocol that uses measurements in mutually unbiased bases. The goal of this program is to increase the private information capacity of optical channels. Here we report on...
متن کامل